

Reliability Analysis Now and Then

Piero Baraldi

Reliability in Theory

Reliability (ISO/IEC 2382-14): ability of an item (system) to perform a required function, under stated conditions, for a stated period of time.

Reliability In Practice

Reliability (ISO/IEC 2382-14): ability of an item (system) to perform a required function, under stated conditions, for a stated period of time.

Design for Reliability

Reliability In Practice

Reliability (ISO/IEC 2382-14): ability of an item (system) to perform a required function, under stated conditions, for a stated period of time.

Design for Reliability

Feeding KID for Reliability-Centered Decision Making

Input Knowledge, Information and Data (KID)

- Failure Data
- Expert Knowledge
- Physics-based models
- Monitored Signals
- Images
- Inspection Reports

Maintenance: When? What?

Reliability-Centered Decision Making for Maintenance

Input Knowledge, Information and Data (KID)

- Failure Data
- Expert Knowledge
- Physics-based models
- Monitored Signals
- Images
- Inspection Reports

• ...

Reliability-Centered Decision Making for Maintenance

Artificial

Intelligence **(AI)**

Input Knowledge, Information and Data (KID)

- **Failure Data** ٠
- Expert Knowledge ٠
- Physics-based models •
- **Monitored Signals** •
- Images ٠
- **Inspection Reports** ٠

Reliability Quantification: Prognostics The Challenge

Reliability Quantification: Prognostics \rightarrow The Challenge

Reliability Quantification: Prognostics \rightarrow The Challenge KID Validation

Reliability Quantification: Prognostics \rightarrow The Challenge KID Validation

18

Reliability Quantification: Prognostics \rightarrow The Challenge Confidence

Intelligence

Reliability Quantification: Prognostics \rightarrow The Challenge Confidence

Sources of uncertainty:

1) noise on the measurements

- 2) stochasticity of the degradation process
- 3) unknown future operating conditions
- 4) Modeling error, i.e. inaccuracy of the

prognostic model used to perform the prediction

Reliability Quantification: Prognostics → The Challenge Confidence

Mean Variance Estimator
Deep Ensemble
Monte Carlo Dropout
...

It will fail in the interval (55, 60) hours with probability 90%,

Reliability Quantification: Prognostics \rightarrow The Challenge Confidence

22

Reliability Quantification: Prognostics \rightarrow The Challenge Consistency with Domain Knowledge

Reliability Quantification: Prognostics \rightarrow The Challenge Consistency with Domain Knowledge

Predictive Reliability Quantification: Prognostics \rightarrow The Challenge Explainability

Reliability Quantification: Prognostics → The Challenge Explainability

Conclusion: the ESREL Answer to the Grand Challenge

Post-prognosis decision making, RUL control and prescriptive maintenance

Christophe Bérenguer christophe dot berenguer at grenoble-inp dot fr

GIPSA-lab, Univ. Grenoble Alpes - Grenoble INP & CNRS, France

cnrs

ESREL 2025 - Expert Panel - Reliability analysis in the future: challenges and directions for the research

June 18th, 2025

RUL Control problem: Remaining Useful Life (RUL)

1. Remaining Useful Life, RUL(t), is a random variable that expresses the time remaining before system degradation reaches a maximum level D_{max} .

2. Assigning a given desired RUL profile requires controlling the degradation process.

Using Prognosis Information for Decision-Making

What do we use the prognosis information for ?

 \Rightarrow Post-prognosis decision making

- Classical use : predictive maintenance decision-making
- More comprehensive use : prescriptive maintenance, i.e. managing the degradation and controlling the RUL (Feedback from system-individual remaining useful life information on the system operation)
 - At the item level :
 - Derating the system
 - Modifying its operation and control rule
 - Jointly scheduling revenue missions and maintenance actions to manage the deterioration and lifetime
 - At the fleet level :
 - Sharing the load among the fleet items
 - Taking advantage of degrees of freedom offered by the flot heterogeneity

Post-prognosis decision-making : key enabler for prescriptive maintenance in the Pronostics and Health Management framework

RUL controller proposition

RUL controller proposition

RUL controller proposition

How to design this RUL controller properly?

Simulation Results : Application to a Wind-Turbine

Post-prognosis Load Allocation

Post-prognosis decision-making strategy for a multi-stack fuel cell system

Jian Zuo's PhD Thesis

Post-prognosis Scheduling of Revenue Missions and Maintenance

Post-prognosis scheduling of revenue missions and maintenance actions on a fleet of assets

Elodie Robert's PhD Thesis

