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Reliability in Theory 3

Reliability (ISO/IEC 2382-14): 
ability of an item (system) to 
perform a required function, 

under stated conditions, 
for a stated period of time. 



Reliability In Practice 4

Design for Reliability

Maintenance

Reliability (ISO/IEC 2382-14): 
ability of an item (system) to 
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under stated conditions, 
for a stated period of time. 
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Design for Reliability

Maintenance

Reliability (ISO/IEC 2382-14): 
ability of an item (system) to 
perform a required function, 

under stated conditions, 
for a stated period of time. 



Input Knowledge, Information 
and Data (KID)

• Failure Data
• Expert Knowledge 
• Physics-based models
• Monitored Signals
• Images 
• Inspection Reports
• …

Feeding KID for Reliability-Centered Decision Making 6

Maintenance:
When?
What?

Inspection 
report
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Reliability Quantification: 
Prognostics

The Challenge
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Can I believe the reliability 
outcomes of the AI model?
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KID Validation

KID Validation
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KID Validation



13Reliability Quantification: Prognostics  The Challenge
Accuracy

Few 
Misclassifications!

Real data «x1,x2,…xn, class»
KID Validation Accuracy
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KID Validation Accuracy
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KID Validation Accuracy
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KID Validation Accuracy



18Reliability Quantification: Prognostics  The Challenge
Accuracy

Domain 
Adaptation

KID Validation Accuracy



19Reliability Quantification: Prognostics  The Challenge
Confidence

Prognostic
Model

It is going to fail
 in: 57 hours, 25 minutes, 
18 seconds

KID Validation Accuracy Confidence



20Reliability Quantification: Prognostics  The Challenge 
Confidence

Prognostic
Model

Sources of uncertainty:
 1) noise on the measurements
 2) stochasticity of the degradation process
 3) unknown future operating conditions 
 4) Modeling error, i.e. inaccuracy of the 
prognostic model used to perform the prediction

It is going to fail
 in: 57 hours, 25 minutes, 
18 seconds

KID Validation Accuracy Confidence
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Confidence

Prognostic
Model

KID Validation Accuracy Confidence

• Mean Variance Estimator
• Deep Ensemble
• Monte Carlo Dropout
• …

It will fail in the interval 
(55, 60) hours with 

probability 90%,
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Confidence

The prediction interval 𝐼𝐼𝑎𝑎 must be:
• As small as possible
• 𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 ∈ 𝐼𝐼𝛼𝛼 ≥ 𝛼𝛼

KID Validation Accuracy Confidence

It will fail in the interval 
(55, 60) hours with 

probability 90%,
Prognostic

Model

• Mean Variance Estimator
• Deep Ensemble
• Monte Carlo Dropout
• …

OK!

NO!
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Domain Knowledge:
• Laws of Physics
• Empirical Expertise

AI Model

reflects

Reliability Quantification: Prognostics  The Challenge 
Consistency with Domain Knowledge

KID Validation Accuracy Confidence Consistency with 
Domain Knowledge
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Consistency with Domain Knowledge

Physics-Informed Neural 
Network

Loss Function= ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + ℒ𝑝𝑝𝑝𝑝𝑝

KID Validation Accuracy Confidence Consistency with 
Domain Knowledge



Predictive Reliability Quantification: Prognostics  The Challenge 
Explainability
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damaged

AI-based PHM Model

Black box!

KID Validation Accuracy Confidence Consistency with 
Domain Knowledge Explainability

healthy



Reliability Quantification: Prognostics  The Challenge 
Explainability
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It is damaged

AI-based PHM Model

Black box!

KID Validation Accuracy Confidence Consistency with 
Domain Knowledge Explainability



Conclusion: the Grand Challenge 27

Trustworthy outcomes

• AutoEncoders
• Ensembles of NN

• Domain Adaptation
• GAN
• Natural Language 

Processing

• Mean Variance 
Estimation

• Monte Carlo Dropout
• Deep Ensemble

• Physics-Informed 
Neural Networks

• SHAP
• CartoonX
• GradCAM
• Counterfactuals
• …

I can believe the reliability  
outcomes!

KID are Validated Accurate Confident Consistent with 
Domain Knowledge Explainable
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• AutoEncoders
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Neural Networks

• SHAP
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• GradCAM
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KID are Validated Accurate Confident Consistent with 
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Special Session 5N: Natural language 
processing for RAMS applications 
Organized by P. Baraldi, J. Bias Macedo, 
M. J. das Chagas Moura, D. Valcamonico 
and E. Zio
Number of papers = 8

Conclusion: the ESREL Answer to the Grand Challenge

Session 15A: Data-Driven 
Uncertainty Quantification and 
Surrogate Models
Number of papers = 5

Special Session 8E: Physics-Informed 
Machine Learning for RAMS
Organized by I. Ahmed, P. Baraldi 
and E. Zio
Number of papers = 5

Special Session 10E: Explainable 
Artificial Intelligence (XAI) for 
Reliability, Availability, 
Maintainability and Safety 
(RAMS) Applications
Organized by P. Baraldi, J. 
Figueroa, E. Zio 
Number of papers = 5
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RUL Control problem: Remaining Useful Life (RUL)

1. Remaining Useful Life, RUL(t), is a random variable that expresses
the time remaining before system degradation reaches a maximum level Dmax .

2. Assigning a given desired RUL profile requires controlling the degradation
process.
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Using Prognosis Information for Decision-Making

What do we use the prognosis information for ?
⇒ Post-prognosis decision making
▶ Classical use : predictive maintenance decision-making
▶ More comprehensive use : prescriptive maintenance, i.e. managing the

degradation and controlling the RUL (Feedback from system-individual
remaining useful life information on the system operation)
▶ At the item level :

▶ Derating the system
▶ Modifying its operation and control rule
▶ Jointly scheduling revenue missions and maintenance actions to manage the

deterioration and lifetime
▶ At the fleet level :

▶ Sharing the load among the fleet items
▶ Taking advantage of degrees of freedom offered by the flot heterogeneity

Post-prognosis decision-making : key enabler for prescriptive maintenance in
the Pronostics and Health Management framework
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RUL controller proposition
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To design an outer-loop control to adapt w
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Simulation Results : Application to a Wind-Turbine

End-of-life vs. Generated Energy

Monica S. Felix’s PhD Thesis
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Post-prognosis Load Allocation

Post-prognosis decision-making strategy for a multi-stack fuel cell system
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Jian Zuo’s PhD Thesis
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Post-prognosis Scheduling of Revenue Missions and Maintenance

Post-prognosis scheduling of revenue missions and maintenance actions on a
fleet of assets

Problem statement

5/06/2019 Joint assignment missions/maintenance 5
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Objective
Define an optimized schedule Π integrating missions and maintenance 
for the fleet 
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Maintenance cost analysis

5/06/2019 Joint assignment missions/maintenance 10

ℙ!"# Savings with fleet Method Method wins

0.1 6.45%
Fleet 100%

1VS1 0%

0.2 2.53%
Fleet 83.4%

1VS1 16.6%

0.3 2.41%
Fleet 86%

1VS1 14%

ℙ!#$ = maximum failure probability

Decrease of the maintenance costs when using the 
fleet dimension to schedule the missions and the 

maintenance operations

When ℙ./0 increases, the mission blocks are 
more filled with the fleet à higher failure risk

Elodie Robert’s PhD Thesis
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