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Risk Assessment: directions for the research
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A: New and Multiple Hazards
Cyber threats scenarios: Computational Risk Assessment by Grey Box Models (GBMs)
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Knowledge

Black-box (BB) modelling

Data-driven models

• Model interpretability

• Computational Demand

• Lack of interpretability

• Fast computation

White-box (WB) modelling

Physics-based models

Grey-box (GB)

modelling

Physics Data

Advantages:

• Model interpretability

• Fast computation

The GBM overcomes the limitations of standalone WBMs and BBMs

The GBM offers a tailored trade-off between accuracy, computational burden, and model interpretability



How to select the best 

alternative?

Grey-Box Models (GBM) leverage first principles and monitored data for lowering computational burden
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substitution

…

𝟐𝑵 − 𝟏 GBM alternatives

CPS GBM 1
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CPS GBM 2

Layer 1

…
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CPS GBM 3

Layer 1

…

Layer 𝑁 ✓ Modular

✓ Interpretable

✓ Fast

Optimal Substitution Plan Problem (OSPP)

Value-of-Information (VoI) quantifies loss improvement of making decision 𝑆 with respect to reference ∅:
VoI 𝑆 = 𝔼 𝐿∅ − 𝔼 𝐿𝑺 Losses: 𝐿1: Computational load, 𝐿2: Lack of fit

Decision: GBM architecture

J.P. Futalef, F. Di Maio, E. Zio. (2025). Value-of-Information-based Optimization of Grey-Box Models for Computational Risk Assessment of Cyber Physical Systems.
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Risk Assessment: A “knowledge exercise”
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Natural hazards analysis

Spatial modeling of natural hazards

Hazard impact analysis on the 

critical infrastructure

Performance assessment of interdependent 

critical infrastructures

A: New and Multiple Hazards
Natual Hazards scenarios: Computational Risk Assessment by Stochastic Fields and Input-
Output Inoperability Modelling

M.V. Clavijo Mesa, F. Di Maio, E. Zio, “Dynamic Inoperability Input-Output Modeling of a System of Systems Made of Multi-State Interdependent Critical Infrastructures”, 2025
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A: New and Multiple Hazards
Natual Hazards scenarios: Computational Risk Assessment by Stochastic Fields and Input-
Output Inoperability Modelling
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Performance assessment of interdependent 

critical infrastructures

A: New and Multiple Hazards
Natual Hazards scenarios: Computational Risk Assessment by Stochastic Fields and Input-
Output Inoperability Modelling

M.V. Clavijo Mesa, F. Di Maio, E. Zio, “Dynamic Inoperability Input-Output Modeling of a System of Systems Made of Multi-State Interdependent Critical Infrastructures”, 2025
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A: New and Multiple Hazards
Natual Hazards scenarios: Computational Risk Assessment by Stochastic Fields and Input-
Output Inoperability Modelling

M.V. Clavijo Mesa, F. Di Maio, E. Zio, “Dynamic Inoperability Input-Output Modeling of a System of Systems Made of Multi-State Interdependent Critical Infrastructures”, 2025
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C: Complexity and computation

AI meta-modelling / Surrogate modelling / Reduced Order modelling

X

Artificial Neural Netwok (ANNs)

Deep Neural Networks (DNNs)

Physics-Informed Neural Networks (PINN)

Kriging - Gaussian Processes (GPs)

….

TRAINING



Ignalina NPP model nodalization scheme [Ušpuras et al., 

Accident and Transient Processes at NPPs with Channel-type 

Reactors, monograph, Kaunas: Lithuanian Energy Institute. 

Thermophysics, 28, 2006]

C: Complexity and computation

Bootstrapped ANN 

Safety margin quantification for the PCT during the Complete Group Distribution 

Header (GDH) Blockage Scenario

Zio, E., Di Maio, F., “Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code Uncertainties in the Estimation of Safety Margins”, Science and 

Technology of Nuclear Installations, Article ID 340164, 9 pages, 2008.
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P: Deep Uncertainties & Rare Events

Advanced Monte Carlo Simulation

1.  Subset Simulation (SS)

2.  Line Sampling (LS)
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P: Deep Uncertainties & Rare Events

AI & Advanced MC Simulation

1.  Subset Simulation (SS)
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Kriging (Gaussian process) metamodel

Real BE-TH code output

Kriging output prediction

95% Confidence Interval

Design Of Experiments (DOE) (from the BE-TH code)

𝑦 = 𝑓 𝒙 = ℳ𝓧,𝒴 𝒙 + 𝜎2 𝒙System input x

Sy
st

em
 o

u
tp

u
t 
y

Prediction Gaussian

Process

Kriging 

metamodel 

uncertainty

AI & Advanced MC Simulation: 

Adaptive Kriging Monte Carlo Sampling (AK-MCS)
L. Puppo, N. Pedroni, A. Bersano, F. Di Maio, C. Bertani, E. Zio, “Failure Identification in a Nuclear Passive Safety System by Monte Carlo Simulation with Adaptive Kriging”, Nuclear

Engineering and Design, 380, 111308, 2021.

L. Puppo, N. Pedroni, A. Bersano, F. Di Maio, C. Bertani, E. Zio, “A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal

Failure Regions in a Nuclear Passive Safety System”, Reliability Engineering and System Safety, Vol. 216, 107963, 2021.

• Kriging (Gaussian process) metamodel
✓ Fast-running surrogate of the original BE-TH code

✓ Direct evaluation of the uncertainty in the metamodel predictions



Kriging (Gaussian process) metamodel
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AI & Advanced MC Simulation: 

Adaptive Kriging Monte Carlo Sampling (AK-MCS)
L. Puppo, N. Pedroni, A. Bersano, F. Di Maio, C. Bertani, E. Zio, “Failure Identification in a Nuclear Passive Safety System by Monte Carlo Simulation with Adaptive Kriging”, Nuclear

Engineering and Design, 380, 111308, 2021.

L. Puppo, N. Pedroni, A. Bersano, F. Di Maio, C. Bertani, E. Zio, “A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal

Failure Regions in a Nuclear Passive Safety System”, Reliability Engineering and System Safety, Vol. 216, 107963, 2021.

• Kriging (Gaussian process) metamodel
✓ Fast-running surrogate of the original BE-TH code

✓ Direct evaluation of the uncertainty in the metamodel predictions

• Adaptive Monte Carlo Sampling
✓ Learning function → Intelligent update of the DOE across the failure limit

Real BE-TH code output

Kriging output prediction

95% Confidence Interval

Design Of Experiments (DOE) (from the BE-TH code)



GBMs & Advanced MC Simulation
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J. P. Futalef, F. Di Maio, E. Zio, “A dynamic importance function for accidental scenarios generation by RESTART in the computational risk assessment of cyber-physical 

infrastructures”, Reliability Engineering and Systems Safety, 2025.
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Spontaneous rupture of a SG tube due to the SCC and pitting 
F. Di Maio, F. Antonello, E. Zio, “Condition-Based Probabilistic Safety Assessment of a Spontaneous Steam Generator Tube Rupture Accident Scenario”, NUCLEAR

ENGINEERING AND DESIGN, 326, pp. 41–54, 2018.

S. M. Hoseyni, F. Di Maio, E. Zio, "Condition-based probabilistic safety assessment for maintenance decision making regarding a nuclear power plant steam generator

undergoing multiple degradation mechanisms", RELIABILITY AND SYSTEMS SAFETY, 191, 106583, 2019.
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Risk Assessment: directions for the research
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K: Big & Heterogeneous Data

Digital Twins

Real-time data
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Dynamic nature: 

adaptation of the physical

object along the whole

lifetime

Issues to be addressed

L. Miqueles, I. Ahmed, F. Di Maio, E. Zio “Importance Sampling for Monte Carlo Dynamic Event Tree Analysis of Accident Scenarios in new-generation Nuclear 

Power Plants”, accepted, Nuclear Science and Engineering.

L. Miqueles, I. Ahmed, F. Di Maio, E. Zio, “A Grey-Box Digital Twin-based Approach for Risk Monitoring of Nuclear Power Plants”, ESREL2022, Dublin, Ireland, 28th 

August - 1st September 2022.



K: Big & Heterogeneous Data

A DT for the risk monitoring of a Small Modular Reactor
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Interest in foundational issues

Artificial intelligence (AI) for risk assessment

Digital twins as a security risk



6/17/2025

We need to regain the enthusiasm for foundational 
issues that we experienced in the 80s and 90s SRA Newsletter

1986, 6(1)

SRA Newsletter, 
1992, 12(2) 



6/17/2025

Artificial intelligence (AI) for risk assessment
- How far can and should we go in letting AI influence 

risk management and decision-making?

Technical and value issue



6/17/2025

• Consequence characterization
o Consequence specification, e.g., event specification using natural language 

processing or scenario specification using causal graph models
o Consequence prediction, e.g., effect prediction using regression models

• Uncertainty characterization
o Uncertainty representation, e.g., probability estimation using regression models

• Knowledge characterization
o Knowledge representation, e.g., representing rules, constraints, and facts as 

conceptual graphs
o Data/information/knowledge integration, e.g., extracting and combining data from 

different databases

AI for risk assessment – Current use
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AI for risk assessment – Potential use?

• Set risk 
acceptance 
criteria

• Define 
scope

• Consequence 
characterization

• Uncertainty 
characterization

• Knowledge 
characterization

• Compare 
risk 
description 
with risk 
criteria

• Acceptable 
risk?

• Which 
measures to 
implement?



Digital twins as a security risk

6/17/2025

Digital twin:
“… a computer-based representation of a physical system that is used 
for research, planning, or management (often in real-time) purposes” 
(Zio & Miqueles, 2024)

=> A model of a system 
(Typically, with the connotation of being a high-fidelity, accurate model)

DALL∙E (generated through ChatGPT)



Digital twin examples

6/17/2025

Autonomous vehicles (Almeaibed et al., 2021)

Sewer systems (Bartos & Kerkez, 2021)

Buildings (Hosamo et al., 2022)

Hospitals (Peng et al., 2020)



What is the problem?

6/17/2025

Reverse engineering / Inverse modeling

DALL∙E (generated through ChatGPT)



Research needs

6/17/2025

I. How can we continue the development of digital twin 
methodology while managing the security risk?

II. How should the security risk impact how we as 
researchers disseminate our results?
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Big questions!

2

• Are traditional risk 
assessment
approaches obsolete?

• What topics should risk 
assessment research
prioritize?

Rapid changes

Large uncertainties

Digitalization

Increased system complexity

Access to ‘big data’

Autonomous systems

Artificial Intelligence

Challenges of the future

© Floris Goerlandt 2025



Let’s focus the talk a bit

3

Source: ISO 2018. ISO31000 © Floris Goerlandt 2025



Redefining the question
When is a method suitable?

4

We need criteria and approaches
to assess whether a given

• Risk identification technique

• Risk analysis technique

• or a specific application of such 
techniques

… is fit for purpose.
Validation

Source: OpenAI 2025 © Floris Goerlandt 2025



Validating a specific RI or RA application
Generic approaches

5

Source: Goerlandt et al. 2017. Safety Science 99:127-139 | Sadeghi and Goerlandt 2021. Safety 7:72

Independent 

peer review

Benchmark 

exercise

Reality check
Quality 

assurance

Validity tests

Illustration

© Floris Goerlandt 2025



Validating a specific RI or RA application
Example guidance
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Source: SRA 2025 | Sadeghi and Goerlandt. 2023. Safety Science 162:106080

Independent peer review 

framework for validating 

application of STPA techniqueQuality tests

for risk analyses

© Floris Goerlandt 2025



Validating generic RI or RA techniques
Criteria b/o systems view on accident causation

7

Based on: Rasmussen 1997. Safety Science 27(2-3):183-213 | Dallat et al. 2019. Safety Science 119:266-279

ID Criterion

C1 Multiple actors and levels

C2 Multiple contributing factors

C3 Vertical integration

C4 Feedback

C5 External pressure

C6 Work practice migration

C7 Erosion of defenses

C1 C2 C3 C4 C5 C6 C7

Checklist x x x x p p p

HAZOP x x x p p p x

FMEA x x p p p p x

STPA ✓ ✓ ✓ ✓ ✓ ✓ ✓

Application for selected techniques

✓ yes p possibly x no

© Floris Goerlandt 2025



RI and RA in context: ISO31000

8

PRINCIPLES

Underlying

values and 

considerations

FRAMEWORK

Embedding risk

management in 

organization

PROCESS

Steps to assess

risk and take

action

Source: ISO 2018. ISO31000

PRINCIPLES

FRAMEWORK PROCESS

© Floris Goerlandt 2025



The need for a contextual view on validation 
of RI and RA techniques

9

Factors in situational context:
• Internal to organization

• External to organization

• Aims and significance of decision

• Risk management principles to 
be prioritized

• Engagement with different
types of stakeholders

• Reporting requirements

Activity about 
which to 

assess risk

RI and RA 
techniques

Situational 
context

© Floris Goerlandt 2025



Contextual validation of RI or RA techniques
Example for maritime authority decision making

10

Source: HELCOM 2018. OpenRisk Guideline | Laine et al. 2021. Marine Pollution Bulletin 171:112724

Basic screening Strategic

Aim
Shipping risk trend 

detection

Assess preparedness and response 

effectiveness to maritime pollution risk

Decision
Determine need for

in-depth risk process
Major investments outside existing budgets

Periodicity Annually Ad hoc, based on other risk processes

Resources Low High

Competence Low High

© Floris Goerlandt 2025



What are future research needs?

11

• Assess adequacy of current validation approaches
in light of future challenges 

• For specific RI and RA applications

• For generic RI and RA techniques

• Develop and test new criteria which account for
the effects of these challenges on changes to
activities, systems, and situational contexts

• Develop and test RI and RA techniques
which align with these criteria

• Linking research with practice

• Understand real-world practices and practitioner needs

• Conditions for uptake of new techniques

© Floris Goerlandt 2025



Final note: pragmatism over principle?

12

Source: OpenAI 2025 | Imgur 2025 © Floris Goerlandt 2025



Thank you!
Questions?

floris.goerlandt@dal.ca

13



Risk assessment for the future: 
challenges and directions for the research
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Risk assessment of the future. How it will be?
1. Dynamic and Real-Time Analysis
• Shift from static reports to real-time reporting and AI-powered monitoring.
• Digital twins of complex systems either industrial or societal will simulate risks 
before they actually occur.
Example: Using satellite data and AI to predict wildfires or flood risks instantly.

2. Integration of Emerging Technologies
• AI & Machine Learning: Automate detection of risk patterns, cyber threats and 
natural phenomena.
• Quantum computing: May eventually model highly complex risk systems like 
climate feedback loops.

ESREL and SRA – Europe 2025
Stavanger, Norway17 June 2025



Risk assessment of the future. How it will be?

3. Holistic Thinking
• Future risk assessment will not evaluate risks in one sector (e.g. just financial or 
environmental).
• Instead, it will account for interdependencies and interactions e.g.:
A cyberattack → disrupts society → causes financial issue → triggers political instability
• Multi-domain risk modeling will become the norm.

4. Simulation-Based Planning
• In the past we had Monte Carlo simulations, and agent-based modeling, 
eventually we will shift to real time simulations even for complex systems.
• The traditional old time methods of asking: “What happens if...” will be applied 
across many sectors simultaneously.
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Risk assessment of the future. How it will be?
5. Incorporating Human and Behavioral Risks
• Psychological and social behaviors (e.g., panic, misinformation spread, 
intentional acts) will be part of formal risk models.
• The role of perception, trust, and misinformation will be accounted
• Autonomous systems will be incorporated in risk assessment

6. Ethical and Emerging Risk Assessment
• Emerging risk evaluation especially for low-probability but high-impact 
threats to society. 
• Ethics and long-term consequences will become part of risk evaluation—
especially in AI, biotechnology, and climate decisions.
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Tools & Techniques of Future Risk Assessment
Tool/Approach Function

AI/ML prediction models Real-time anomaly and trend detection, data-driven 
decision making, improve compliance, detect threats

Digital twins Simulate complex systems at scale, remotely and 
safely, test extreme scenarios, train people

Integrated risk platforms Connect operational, strategic, societal and financial 
risks, holistic approach

Behavioral analytics Understand human errors, social instability, intentional 
acts, take into account misinformation

Autonomous systems Include interactions with robots and autonomous 
multi-agent systems in risk assessment

ESREL and SRA – Europe 2025
Stavanger, Norway17 June 2025



Challenges in Future Risk Assessment

• The main challenge is that the same capabilities that make AI so powerful and 

useful induce serious safety and security risks.

• The dynamic nature of AI impose dynamic risks; new threats may emerge as 

systems adapt to the new reality and we should be prepared for that.

• Safety and security have to be unseparated in future risk assessments.
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Conclusion
Risk assessment in the future will be:
• AI-enhanced
• Interdisciplinary
• Even more predictive (and creative!) than it used to be
• Participatory and holistic
• Focused not just on loss prevention—but on resilience , sustainability and adaptation

Things to take into account:
• Data overload vs. insight clarity
• Bias in AI models on decision systems
• Ethical concerns in data use and surveillance

What else???
ESREL and SRA – Europe 2025

Stavanger, Norway17 June 2025



X
T

H
E

 U
N

IV
E

R
S

IT
Y

 O
F

 S
T

R
A

T
H

C
L

Y
D

E

Risk Assessment for the  Future : 
Research Challenges & Directions 
 
Le sle y Walls
Manage m e nt Scie nce

le sle y.walls@strath.ac .uk

X
  

T
H

E
 P

L
A

C
E

 O
F

 U
S

E
F

U
L

 L
E

A
R

N
IN

G



X
   T

H
E

 U
N

IV
E

R
S

IT
Y

 O
F

 S
T

R
A

T
H

C
L

Y
D

E

How m ight we  ide ntify 
and  structure  future  
challe nge s to shape  

re se arch and  
de ve lopm e nt that 
contribute s use ful 

knowle dge ?



X
   T

H
E

 U
N

IV
E

R
S

IT
Y

 O
F

 S
T

R
A

T
H

C
L

Y
D

E

What is the  Purpose of Research?

Cre a te  use fu l 
knowle d g e  for a  

b e t te r world

Adap te d  from : MacIntosh e t a l (2021) De live ring  Im pact in Manage m e nt Re se arch and  Inform e d  by Abstrac tion of Unive rsity of Stra thclyde  Im pact Case s
NOTE: Research can sta rt a t different points, tra verse different paths and evolve at different speeds

Engag ing Fund ing  & Proje cts

Re sourcing  & DataCom m unicating
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How Scale  Large and Small World Challenges?
Cha lle ng e  Fra m ing

Problem structuring, 
foresighting

Cre a t ing  Knowle d g e  
Fundamenta l, applied, 
translational research

Prob le m  Struc tu ring
Research questions

Eng a g e Im p a c t

Adapted from Pohl et a l, 2021
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Illustrative example for resilient digita lised infrastructure challenge
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So What? 

What top ics should  risk asse ssm e nt re se arch and  
de ve lopm e nt now g ive  p riority to?

Are  the  trad itional risk asse ssm e nt approache s obsole te ? 

Process for thinking through how we might identify research problems, grounded in 
large-world challenges, likely to lead to the creation of useful knowledge capable of 
enabling those with the power and influence to make positive change

It depends … for example
- on the extent to which they fa il to be fit for purpose
- the value of new methods/ frameworks in supporting better decisions
- on how existing principles/ theories can be revita lised by new ways of thinking/ doing 
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